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The present study is part of an ongoing effort to identify objective predictors of subjective air traffic controller
workload. The study begins with a comparison of the salient variables governing en route controllers' perceptions
of the performance capabilities of a sample of aircraft and the actud performance of the aircréft in the en route
environment. A group of 24 Certified Professional Controllers (CPCs) from Kansas City (N = 17) and Boston (N =
7) en route centers provided estimates of cruising speed, climb, and descent rates for asample of 24 aircraft types.
A matrix of squared Euclidean distances derived from summary messures (i.e., means of estimated speed, climb,
and descent rates) was used to construct a classical multidimensional scaling (CMDS) model representing
controllers’ perceptions of the performance capabilities of each aircraft type. A second matrix was derived from
means of speed, climb, and descent rates for the same 24 aircraft types computed from a sample of live air traffic
data collected from the Kansas City and Boston en route centers. This matrix was used to construct a second CMDS
model representing actual aircraft performance. Interpreteion of the dimensions of the CMDS model of ATC
estimates suggested that Dimension 1 was related to engine type, whereas Dimension 2 was primarily associated
with aircraft weight cless. In the model of SAR data, both engine type and weight class were predominantly
assaciated with Dimension 1. Results are used to develop a measure of aircraft mix (i.e., the mix of aircraft with

different performance characteristics) to beadded to asuite of controller activity and taskload measures.

Introduction

Aircraft mix has been proposed as one of the trfic
characteristics that contributes to sector complexity
in en route air traffic control (Robertson, Grassberg,
& Richards, 1979; Federd Aviation Administration
[FAA], 1984; Grossberg, 1989; Mogford, Murphy,
Roske-Hofstrand, VYastrop, & Guttman, 1994).
“Sector complexity” describes static and dynamic
characterigtics of the air traffic control environment
that combine with controller taskload (i.e, the ar
traffic events to which the controller is exposed) to
produce controller workload (i.e., the controllers’
reaction to and perceived effort involved in managing
these events) (Grossberg, 1989; Manning, Mills, Fox,
Pflederer, & Mogilka, 2001). As changes are
introduced into the air traffic control environment
such as the recent implementation of the Display
System Replacement (DSR), or the proposed
introduction of “free flight” (Radio Technical
Commission for Aeronautics [RTCA], 1995) it
becomes increasingly important that measures are
devdoped to evaluate the impact of these changeson
performance. In spite of a growing body of work
dedicated to the messurement of workload, taskload,
sector complexity, and controller performance (for a
list of 162 of these measures, see Hadley, Guttman,
& Stringer, 1999) little attention has been focused on
quantifying aircraft mix. This is possibly because,
until recently, aircraft mix had not been clearly
defined.

Pfleiderer (2000) conducted an investigation of the
salient features of aircraft mix as it relaes to aircraft

performance charecteristics. For this andysis, 30
Certified Professiona Controllers (CPCs) from
various Air Route Traffic Control Centers (ARTCCs)
across the United States provided average speed,
climb, and descent rate egimates for a sample of 30
distinct aircraft types. A matrix of squared Euclidean
distances derived from summay estimates (i.e.,
means of speed, climb, and descent) was used to
congruct a classical multidimensional scaling
(CMDS) mode of the arcraft. Multiple regression
interpretation of the two-dimensional solution
revealed that Dimension 1 was relaed to engine type,
wheress Dimension 2 was associated with weight
class. Theresults of the andysis were interpreted as
evidence of  peformance-based  prototypes.
However, it was also evident from the pasition of the
elements (i.e., aircraft types) in the derived stimulus
space that it might be possible to develop a measure
of arcraft mix using these two easily-obtained
variables.

The present study is a continuation of that
investigation (i.e., Pfleiderer, 2000). Phase | was
designed to determine whether controllers’
perceptions of aircrat performance and the actual
recorded peformance o aircraft were comparable
(i.e., would demonstrate similar dimensionality in
repeated CMDS analysis). For this analysis, a matrix
of squared Euclidean distances of controller estimates
of mean speed climb, and descent rates for 24
distinct aircraft types was compared with a matrix of
mean speed, climb, and descent rates of the same
aircraft types calculaed from routinely-recorded
System Anadysis Recording (SAR) data. It was



expected that the two dimensions noted in the
previous CMDS analysis of controllers’ perceptions
would be the same &s those in the SAR sample, but it
was possible that the two matrices might differ with
regard to the relative salience and importance of esch
dimension. Characteristics of the CMDS model of
SAR data could be used to confirm, amend, or
replace previoudy-gathered information regarding
the salient features of aircraft mix.

Phase |1 focused on the development of an index of
arcraft mix based on the results of the Phase |
multidimensional  scaling analyses. Because
multidimensional scaling translates patterns of
responding into patterns of elements in a dimensional
space it should be possible to assign base values to
arcraft and then calculae distances representing
differences in performance capabilities to compute an
aircraft mix index.

Finally, the aircraft mix index was computed for all
arcraft present in a particular traffic sample. |If the
index has sufficient variability and precision, it
should be able to discriminate between low-dtitude
sectors (i.e., sectorswith a high probability of aircraft
with disparate performance capabilities) and high-
altitude sectors (i.e., sectors with alow probability of
arcraft mix due to the relatively lower service
ceilings of many piston-driven aircraft). If the
aircraft mix index passes the “discriminability” test,
future research will be conducted to determine
whether or not it adds unique information to an
exiging suite of Perffomance and Objective
Workload Evauation Research (POWER) measures
(Mills, Pfleiderer, & Manning, 2002). It is possible
that the complexity associated with arcraft mix is
redundant with other variables. It is aso possible
tha aircraft mix is characteristic of so few sectors so
as to be of little use within the larger suite of
measures. One thing is certain:  Aircraft mix’s
relative contribution to sector complexity and
controller workload cannot be assessed until it has
been quantified.

Phasel: Method
Design and Procedure

Multidimensional scaling refers to a group of
descriptive procedures that transform proximity data
into mapped elements in one or more spatial
dimensons (Kruska & Wish, 1978). In this
application, two matrices of dissimilarity measures
were analyzed: One matrix was based on summary
controller estimates of aircraft performance, the other
was based on summary measures of aircraft
performance deived from SAR data.

Controller Estimate Matrix. This matrix represents a
subset of the data used in a previous study
(Pfleiderer, 2000) in which 30 Certified Professional
Controllers (CPCs) provided estimaes of average
cruising speed, climb rate, and descent rate for each
of 30 distinct aircraft types. In the present study,
mean speed, climb, and descent rate estimaes were
caculated from estimates provided by 24 of the
original 30 controllers for 24 of theoriginal aircraft
types. The subset of 24 controllers was selected from
the larger sample because these CPCs met currency
requirements at the same ARTCCs represented in the
SAR sample: Kansas City (N = 17) and Boston (N =
7). Theaircraft list was reduced because 6 of the 30
aircraft types did not appear in the Kansas City or
Boston airspace during the time sampled. For more
information about matrix construction, participants’
professional experience, detaled descriptions of the
materials used to collect estimates, and other points
of methodology, see Pfleiderer (2000).

SAR Data Matrix. The information used to construct
this matrix was recorded at the Kansas City and
Boston centers. The Kansas City sample consisted of
168 hours of continuous SAR data recorded from
January 19, 1999 through January 24, 1999. The
Boston sample comprised atotal of 27 hours of SAR
data, recorded on March 16, 1998 from 14:00 to
20:59 ZULU (7 hours); March 17, 1998 from 14:00
to 20:59 ZULU (7 hours); March 19, 1998 from
15:00 to 19:59 ZULU (5 hours); and March 20, 1998
from 15:00 to 22:59 ZULU (8 hours). Raw datawere
extracted through the use of “log” and “track” reports
produced by the Data Analysis Reduction Tool
(DART). Within the sampletime frame, 7095 flights
corresponded to the selected aircraft types. The
modal flight duration of these flights was 27 minutes,
which translates to approximately 270 speed and
altitude updates (observations) per flight.

Aircraft type was daived from designators
(aphanumeric labels that indicate the make and
model of an aircraft) that are printed on the flight
progress strip (FPS) and appear within the flight plan
readout display. The contents of both flight progress
strips and flight plan readouts are recorded by the
Host system and output in the DART log report.

Mean climb and descent rate estimaes were
calculated from dltitude information recorded in the
DART track reports. Climb and descent rate
estimates represent the amount of change divided by
duration of change for al detected altitude changes
converted into feet per minute (fpm) and then
averaged across changes for each aircraft (set to
missing if no altitude changes were detected). For



example, from 8:12:08 to 8:17:02 flight XMPLO1
climbed from 26,400 feet to 33,000 feet — a total of
6,600 feet in 4 minutes and 54 seconds (1,454 fpm).
From 8:30:00 to 8:35:00, XMPLO1 climbed from
33,000 feet to 35,000 feet — a total of 2,000 feet in 5
minutes (400 fpm). The climb rate estimate for
XMPLO1 would then be 927 fpm (the mean of the
two changes.) Mean climb and descent rate estimates
were cdculated in this manner for each flight and
then averaged across flights for each designator. Of
course, not all flights made altitude changes during
the time sampled, and so the number of observations
used to calculae mean climb and descent rates varied
between aircraft designators.

Mean speed estimaes weae caculated by first
computing the mean of al ground speeds recorded in
the DART track report for each flight (distinguished
by a unique Aircraft Identifier [AID] Computer
Identifier [CID] combination) and then averaging
across flights for each designator. The number of
updates per flight varied as a function of control time.
However, the number of speed estimates used to
compute the average speed for each designator is
equd to the number of aircraft corresponding to tha
designaor. Please note that, unlike the computation
of mean climb and descent rates, mean speed
caculations did not involve speed changes. The
measure simply represents the average speed for ezch
aircraft type based on the average ground speed for
al individual aircraft o that type.

Squared Euclidean distances wee calculated from
mean speed, climb, and descent rates using SPSS
procedure PROXIMITIES. Distances in the resulting
matrix represented each aircraft's  performance
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Figure 1. Derived Stimulus Configuration of
the Two-Dimensional Multidimensional Scaling
Model of SAR Data

relative to other aircraft in the sample

Variables for Interpretation of CMDS Models. A
separ ate set of variables was collected for the purpose
of interpreting the dimensions of the CMDS models.
The engine number, engine type, and weight class of
each aircraft was obtained from information provided
in Appendix A of 7110.65N, the most recent version
of the Air Traffic Control (FAA, 2002).

Phasel: Results and Discussion

In general, the configurations (Figures 1 and 2) were
similar. In both models Group A consisted primarily
of piston-driven aircraft. The exception to this was
the C208 (Cessna Caravan), a turboprop that did not
perform like other turboprops. (As apoint of interest,
most o thecontrollers in the sample misclassified the
C208 as apiston-driven aircraft.) Group B consisted
entirely of turboprops. In both corfigurations, all
aircraft positioned to the right of the dashed gray line
are jets. However, in the model of ATC estimates
(Figure 2) high-performance jets (Group D) are
clearly distinguished from other jet arcraft. In the
SAR data model (Figure 1), jets formed a single,
loosely-knit group (Group C).

Perhaps the most striking difference between the
configurdions had to do with weight class. Most of
the aircraft types in the top portion of the stimulus
configuréion of ATC estimates (Figure 2) are of the
Smdl and Large weight classes: Heavy aircraft are
positioned in the bottom portion of the configuration.
In the stimulus configuration of SAR data (Figurel),
Heavy aircraft are scattered throughout the cluster of
jets (Group C).
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Figure 2. Derived Stimulus Configuration of
the Two-Dimensional Multidimensional Scaling
Model of ATC Estimates




Table 1. Summary of Multiple Regression
Analysis Interpretation of the Characteristics of
the Two-Dimensional CMDS Model of SAR Data

Criterion R R F p 31 32
Engine Type 94 89 8592 .00 .87F -.25%
Weight Class 80 .65 19.80 .00 .62*  -.44*

Engine Number .31 .09 1.65 .22 20 -.28
*p<.01

The most objective technique available for
dimensional interpretation is the regression method in
which variables believed to correspond with the
stimulus  configuration are regressed  over
coordinaes. For this application, engine type was
coded acoding to peformance capabilities
associated with each engine type, from lowest
(piston-driven) to highest (jet propelled). Weight
classwas also coded into three ordered levels: Small,
Large, and Heavy (for a specific description of
arcraft weight class categories, see FAA, 2002).

According to Kruska and Wish (1978), two
conditions are necessary for satisfactory multiple
regression interpretation of a dimension. First, the
multiple correlations must be extremely high
(correlations in the .90s are recommended, although
thosein the .70s will suffice). As shown in Tables 1
and 2, only engine type and weight class achieved the
recommended degree of @sociation with the
dimensons. In generd, the two data sets were
remarkably similar: Correlations were in the .90's
for engine type and in the .80's for weight class.
However, the two models differed with respect to the
relationship between the dimensions and these
variables. Notice that in the modd of SAR data, the
standardized regression weights of both engine type
and weight class ae more closely associated with
Dimension 1 than with Dimension 2. However, in
the configuration derived from ATC estimates, the
standardized regression weights of engine typewere
more closely associaed with Dimension 1, whereas
weight class was more closely associated with
Dimension 2.

Phasel: Conclusions

The clusters of aircraft identified in the neighborhood
interpretation of the stimulus corfigurations present
the simplest means by which to code aircraft types
for the aircraft mix variable. For the most part, these
groups were defined by engine type. Though high-
performance jetswere not clearly distinguished from

other jets in the configuration of SAR data, it seems
reasonable to classify these aircraft separately in the

Table 2. Summary of Multiple Regression
Analysis Interpretation of the Characteristics of
the Two-Dimensional CMDS Model of ATC Data

Criterion R R F p 31 32
Engine Type 94 88 80.34 .00 .80F -.48
Weight Class 86 .74 29.16 .00 48 - 70*

Engine Number .43 .18 237 12 .08 .-42
*p<.01

computation of the aircraft mix index. On the
average, the controllers who contributed estimates for
the ATC sample had gpproximately 10 years of
experience at their current ARTCCs. The SAR
sample represented 195 hours of traffic. Given the
concordance of the two matrices in other respects, it
is possible that high-performance jeis might have
emerged as a separate group in the SAR
configuration had the sample been large enough to
better approximate the years of experience
represented by thecontrollers in the ATC sample

It is unlikely that the incorporation of weight class is
crucid to the precision of the aircraft mix index. To
begin with, weight class is a correlate of engine type
(i.,e, most piston-driven aircraft are Small, most
turboprops are Large, al Heavy aircraft are jets).
Because of the nature of this relaionship,
incorporation of the weight class dimension would
only involve jet aircraft (i.e, separating jets into
Heavy/other  subgroups). However, the tight
clustering of the jet arcrat in Group C o the
stimulus configuration of ATC estimates (Figure 2)
suggests that this differentiation is probably not
necessary. Heavy aircraft may perform somewhat
differently than other jet aircraft, but this difference
appears to be only dightly perceptible to air traffic
controllers (other than procedural considerations
addressing the wake turbulence associated with
Heavy aircraft and B757s).

Phase Il: Method
Sample

The sample selected for testing the aircraft mix index
consisted of SAR data from 15 high-altitude sectors
and 13 low-dtitude sectors within the Kansas City
airspace. The Kansas City ARTCC was selected
because of the availability of sector information for
that particular center (e.g., sector strata, number of
underlying airports, sector combinations). The data
were recorded on Friday, December 22, 1999 from
15:15 to 16:15 (loca time) when most sectors within
the Kansas City en route center were open (i.e,
sector combinations were minimal).



Procedure

Based on Phase | results, arcraft wee assigned
aircraft type codes with vaues ranging from oneto
four. Piston-driven aircraft were assigned a value of
1, turboprops a value of 2. With some exceptions, jet
arcraft were assigned a value of 3.  High-
performance jets (i.e., aircraft types that perform
within similar parameters as the aircraft in Group D
of Figure 2) are coded as such in the system files of
al en route Host computers.  These file codes were
used to assign a value of 4 to al high-performance
jéts in the sample. Then, arcraft type differences
were calculated between pairs of aircraft within a
given sector to create a half matrix of differences.
For example, DAL589 is acommercid jet assigned a
base code of 3. N149RJ is a turboprop with a base
code of 2. The aircraft type difference between
N149RJ and DAL589 is 1. The final step in the
computation of the index involved summing dl items
in the half matrix.

For each minute of daa, the aircraft mix index was
calculated for all aircraft pars at approximately 12-
second intervals and stored in an array. At the end of
each minute, the mean and standard deviation of the
aircraft mix measure were calculated and sent to an
array for the purpose of caculaing the mean and
standard deviation of the aircraft mix measure for
each 15-minute interval processed.

Phasell: Results and Discussion

Computing aircraft mix at 15-minute intervals for
high and low altitude sectors did not produce a
normal distribution. For that reason, the Mann-
Whitney U satistic (Mann & Whitney, 1947) was
employed to examine w hether the aircraft mix index
was rdiably different in high versus low dtitude
sectors. The Mann-Whitney U is a distribution-free
statistic that tests the null hypothesis that two sets of
observations were sampled from identical
populations. The minimal assumption of the Mann-
Whitney U is the independence of observations
(Marascuilo & McSweeney, 1977). Given the fact
that aircraft cannat be controlled by more than one
sector at any given time, it logicaly follows that
aircraft in one sector were independent of aircraft in
another within each of the 15-minute intervals.

As shown in Table 3, the null hypothesis was rejected
for al comparisons, indicating that the distributions
of the aircraft mix index were reliably different in
high- versus low-altitude sectors. The sum of ranks
assigned to each of the original values for high and
low dtitude sector groups is consstent with the
expectation that the mix of aircraft with different

Table 3. Mann-Whitney U Tests for
Aircraft Mix Index (by Interval)

Mean Sum of
N Rank Ranks U
Interval 1
High Altitude | 15 9.27 139.00 19.00*
Low Altitude | 13 20.54 267.00 )
Interval 2
High Altitude | 15 9.00 135.00 15.00*
Low Altitude | 13 20.85 271.00 )
Interval 3
High Altitude | 15 9.13 137.00 17.00*
Low Altitude | 13 20.69 269.00 )
Interval 4
High Altitude | 15 8.87 133.00 13.00%
Low Altitude | 13 21.00 273.00 '

* Asymptotic significance (2-tailed) <.01

performance characteristics (ergo the aircraft mix
index) would be higher in low altitude airspace.

Phasell: Conclusions

Because the aircraft mix index was able to reliably
detect digtribution differences in high- and low-
atitude sectors, the measure warrants further
investigetion. Plans for future tests include
conducting a CMDS andysis of a much larger
sample of aircraft types to include helicopters and
other rotorcraft to determinewhether they fit into one
of the existing aircraft categories or require the
introduction of a separate code. Then, the aircraft
mix index will be introduced into the current set of
Performance and Objective Workload Evaluation
Research (POWER) variables (Mills, Pfleiderer, &
Manning, 2002) to determine whether or not the
aircraft mix index adds unique information to that set.
Each step in this process hrings us closer to
determining the relative contribution of aircraft mix
to sector complexity. Constructing the elementsthat
create sector complexity may help us understand the
nature of controller workload, and thus provide
insight into the relationship between controller
workload and perf ormance.
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